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CHAPTER 13

InfiniBand

This chapter was written by Dotan Barak, an InfiniBand Expert. Dotan is a Senior Software 
Manager at Mellanox Technologies working on RDMA Technologies. Dotan has been working at 
Mellanox for more than 10 years in various roles, both as a developer and a manager. Additionally, 
Dotan maintains a blog about the RDMA technology: http://www.rdmamojo.com.

Chapter 12 dealt with the wireless subsystem and its implementation in Linux. In this chapter, I will discuss the 
InfiniBand subsystem and its implementation in Linux. Though the InfiniBand technology might be perceived as a 
very complex technology for those who are unfamiliar with it, the concepts behind it are surprisingly straightforward, 
as you will see in this chapter. I will start our discussion with Remote Direct Memory Access (RDMA), and discuss its 
main data structures and its API. I will give some examples illustrating how to work with RDMA, and conclude this 
chapter with a short discussion about using RDMA API from the kernel level and userspace.

RDMA and InfiniBand—General
Remote Direct Memory Access (RDMA) is the ability for one machine to access—that is, to read or write to—memory on 
a remote machine. There are several main network protocols that support RDMA: InfiniBand, RDMA over Converged 
Ethernet (RoCE) and internet Wide Area RDMA Protocol (iWARP), and all of them share the same API. InfiniBand is 
a completely new networking protocol, and its specifications can be found in the document “InfiniBand Architecture 
specifications,” which is maintained by the InfiniBand Trade Association (IBTA). RoCE allows you to have RDMA over an 
Ethernet network, and its specification can be found as an Annex to the InfiniBand specifications. iWARP is a protocol that 
allows using RDMA over TCP/IP, and its specifications can be found in the document, “An RDMA Protocol Specification,” 
which is being maintained by the RDMA Consortium. Verbs is the description of the API to use RDMA from a client code. 
The RDMA API implementation was introduced to the Linux kernel in version 2.6.11. At the beginning, it supported only 
InfiniBand, and after several kernel versions, iWARP and RoCE support were added to it as well. When describing the API, 
I mention only one of them, but the following text refers to all. All of the definitions to this API can be found  
in include/rdma/ib_verbs.h. Here are some notes about the API and the implementation of the RDMA stack:

Some of the functions are inline functions, and some of them aren’t. Future implementation •฀
might change this behavior.

Most of the APIs have the prefix “ib”; however, this API supports InfiniBand, iWARP and RoCE.•฀

The header •฀ ib_verbs.h contains functions and structures to be used by:

The RDMA stack itself•฀

Low-level drivers for RDMA devices•฀

Kernel modules that use the stack as consumers•฀

I will concentrate on functions and structures that are relevant only for kernel modules that use the stack as 
consumers (the third case). The following section discusses the RDMA stack organization in the kernel tree.

http://http://www.rdmamojo.com
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The RDMA Stack Organization
Almost all of the kernel RDMA stack code is under drivers/infiniband in the kernel tree. The following are some of 
its important modules (this is not an exhaustive list, as I do not cover the entire RDMA stack in this chapter):

•฀ CM: Communication manager (drivers/infiniband/core/cm.c)

•฀ IPoIB: IP over InfiniBand (drivers/infiniband/ulp/ipoib/)

•฀ iSER: iSCSI extension for RDMA (drivers/infiniband/ulp/iser/)

•฀ RDS: Reliable Datagram Socket (net/rds/)

•฀ SRP: SCSI RDMA protocol (drivers/infiniband/ulp/srp/)

Hardware low-level drivers of different vendors (•฀ drivers/infiniband/hw) 

•฀ verbs: Kernel verbs (drivers/infiniband/core/verbs.c)

•฀ uverbs: User verbs (drivers/infiniband/core/uverbs_*.c)

•฀ MAD: Management datagram (drivers/infiniband/core/mad.c) 

Figure 13-1 shows the Linux InfiniBand stack architecture.

Figure 13-1. Linux Infiniband stack architecture

In this section, I covered the RDMA stack organization and the kernel modules that are part of it in the  
Linux kernel.
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RDMA Technology Advantages
Here I will cover the advantages of the RDMA technology and explain the features that make it popular in many markets:

•฀ Zero copy: The ability to directly write data to and read data from remote memory allows you 
to access remote buffers directly without the need to copy it between different software layers.

•฀ Kernel bypass: Sending and receiving data from the same context of the code (that is, 
userspace or kernel level) saves the context switches time.

•฀ CPU offload: The ability to send or receive data using dedicated hardware without any CPU 
intervention allows for decreasing the usage of the CPU on the remote side, because it doesn’t 
perform any active operations.

•฀ Low latency: RDMA technologies allow you to reach a very low latency for short messages.  
(In current hardware and on current servers, the latency for sending up to tens of bytes can be 
a couple of hundred nanoseconds.)

•฀ High Bandwidth: In an Ethernet device, the maximum bandwidth is limited by the technology 
(that is, 10 or 40 Gbits/sec). In InfiniBand, the same protocol and equipment can be used from 
2.5 Gbits/sec up to 120 Gbits/sec. (In current hardware and on current servers, the BW can be 
upto 56 Gbits/sec.)

InfiniBand Hardware Components
Like in any other interconnect technologies, in InfiniBand several hardware components are described in the spec, 
some of them are endpoints to the packets (generating packets and the target of the packet), and some of them 
forward packets in the same subnet or between different subnets. Here I will cover the most common ones:

•฀ Host Channel Adapter (HCA): The network adapter that can be placed at a host or at any 
other system (for example, storage device). This component initiates or is the target of packets.

•฀ Switch: A component that knows how to receive a packet from one port and send it to another 
port. If needed, it can duplicate multicast messages. (Broadcast isn’t supported in InfiniBand.) 
Unlike other technologies, every switch is a very simple device with forwarding tables that are 
configured by the Subnet Manager (SM), which is an entity that configures and manages the 
subnet (later on in this section, I will discuss its role in more detail). The switch doesn’t learn 
anything by itself or parse and anlyze packets; it forwards packets only within the same subnet.

•฀ Router: A component that connects several different InfiniBand subnets.

A subnet is a set of HCAs, switches, and router ports that are connected together. In this section, I described the various 
hardware components in InfiniBand, and now I will discuss the addressing of the devices, system, and ports in InfiniBand.

Addressing in InfiniBand
Here are some rules about InfiniBand addressing and an example:

In InfiniBand, the unique identifier of components is the Globally Unique Identifier (GUID), •฀
which is a 64-bit value that is unique in the world.

Every node in the subnet has a Node GUID. This is the identifier of the node and a constant •฀
attribute of it.

Every port in the subnet, including in HCAs and in switches, has a port GUID. This is the •฀
identifier of the port and a constant attribute of it.

In systems that are made from several components, there can be a system GUID. All of the •฀
components in that system have the same system GUID.
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Here is an example that demonstrates all the aforementioned GUIDs: a big switch system that is combined from 
several switch chips. Every switch chip has a unique Node GUID. Every port in every switch has a unique port GUID. 
All of the chips in that system have the same system GUID.

Global IDentifier (GID) is used to identify an end port or a multicast group. Every port has at •฀
least one valid GID at the GID table in index 0. It is based on the port GUID plus the subnet 
identifier that this port is part of.

Local IDentifier (LID) is a 16-bit value that is assigned to every subnet port by the Subnet •฀
Manager. A switch is an exception, and the switch management port has the LID assignment, 
and not all of its ports. Every port can be assigned only one LID, or a contiguous range of 
LIDs, in order to have several paths to this port. Each LID is unique at a specific point of 
time in the same subnet, and it is used by the switches when forwarding the packets to know 
which egress port to use. The unicast LID’s range is 0x001 to 0xbfff. The multicast LIDs range 
is 0xc000 to 0xfffe.

InfiniBand Features
Here we will cover some of the InfiniBand protocol features:

InfiniBand allows you to configure partitions of ports of HCAs, switches, and routers and •฀
allows you to provide virtual isolation over the same physical subnet. Every Partition Key 
(P_Key) is a 16-bit value that is combined from the following: 15 lsbs are the key value, and the 
msb is the membership level; 0 is limited membership; and 1 is full membership. Every port 
has a P_Key table that is being configured by the SM, and every Queue Pair (QP), the actual 
object in InfiniBand that sends and receives data, is associated with one P_Key index in this 
table. One QP can send or receive packets from a remote QP only if, in the P_Keys that each of 
them is associated with, the following is true:

The key value is equal.•฀

At least one of them has full membership.•฀

•฀ Queue Key (Q_Key): An Unreliable Datagram (UD) QP will get unicast or multicast messages 
from a remote UD QP only if the Q_Key of the message is equal to the Q_Key value of this UD QP.

•฀ Virtual Lanes (VL): This is a mechanism for creating multiple virtual links over a single 
physical link. Every virtual lane represents an autonomic set of buffers for send and receive 
packets in each port. The number of supported VLs is an attribute of a port.

•฀ Service Level (SL): InfiniBand supports up to 16 service levels. The protocol doesn’t specify 
the policy of each level. In InfiniBand, the QoS is implemented using the SL-to-VL mapping 
and the resources for each VL.

•฀ Failover: Connected QPs are QPs that can send packets to or receive packets from only one 
remote QP. InfiniBand allows defining a primary path and an alternate path for connected 
QPs. If there is a problem with the primary path, instead of reporting an error, the alternate 
path will be used automatically.

In the next section, we will look at what packets in InfiniBand look like. This is very useful when you debug 
problems in InfiniBand.

InfiniBand Packets
Every packet in InfiniBand is a combination of several headers and, in many cases, a payload, which is the data of the 
messages that the clients want to send. Messages that contain only an ACK or messages with zero bytes (for example, 



CHAPTER 13 ■ INFINIBAND

377

if only immediate data is being sent) won’t contain a payload. Those headers describe from where the packet 
was sent, what the target of the packet is, the used operation, the information needed to separate the packets into 
messages, and enough information to detect packet loss errors.

Figure 13-2 presents the InfiniBand packet headers.

Here are the headers in InfiniBand:

•฀ Local Routing Header (LRH): 8 bytes. Always present. It identifies the local source and 
destination ports of the packet. It also specifies the requested QoS attributes (SL and VL)  
of the message.

•฀ Global Routing Header (GRH): 40 bytes. Optional. Present for multicast packets or packets 
that travel in multiple subnets. It describes the source and destination ports using GIDs. Its 
format is identical to the IPv6 header.

•฀ Base Transport Header (BTH): 12 bytes. Always present. It specifies the source and 
destination QPs, the operation, packet sequence number, and partition.

•฀ Extended Transport Header (ETH): from 4 to 28 bytes. Optional. Extra family of headers that 
might be present, depending on the class of the service and the operation used.

•฀ Payload: Optional. The data that the client wants to send.

•฀ Immediate data: 4 bytes. Optional. Out-of-band, 32-bit value that can be added to Send and 
RDMA Write operations.

•฀ Invariant CRC (ICRC): 4 bytes. Always present. It covers all fields that should not be changed 
as the packet travels in the subnet.

•฀ Variant CRC (VCRC): 2 bytes. Always present. It covers all of the fields of the packet.

Management Entities
The SM is the entity in the subnet that is responsible for analyzing the subnet and configuring it. These are some of its 
missions:

Discover the physical topology of the subnet.•฀

Assign the LIDs and other attributes—such as active MTU, active speeds, and more—to each •฀
port in the subnet.

Configure the forwarding table in the subnet switches.•฀

Detect any changes in the topology (for example, if new nodes were added or removed from •฀
the subnet).

Handle various errors in the subnet.•฀

Subnet Manager is usually a software entity that can be running in a switch (which is called a managed switch) or 
in any node in the subnet.

Figure 13-2. InfiniBand packet headers
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Several SMs can be running in a subnet, but only one of them will be active and the rest of them will be in standby 
mode. There is an internal protocol that performs master election and decides which SM will be active. If the active SM 
is going down, one of the standby SMs will become the active SM. Every port in the subnet has a Subnet Management 
Agent (SMA), which is an agent that knows how to receive management messages sent by the SM, handle them, and 
return a response. Subnet Administrator (SA) is a service that is part of the SM. These are some of its missions:

Provide information about the subnet—for example, information about how to get from one •฀
port to another (that is, a path query).

Allow you to register to get notifications about events.•฀

Provide services for management of the subnet, such as joining or leaving a multicast. Those •฀
services might cause the SM to (re)configure the subnet.

Communication Manager (CM) is an entity that is capable of running on each port, if the port supports it,  
to establish, maintain, and tear down QP connections.

RDMA Resources
In the RDMA API, a lot of resources need to be created and handled before any data can be sent or received. All of the 
resources are in the scope of a specific RDMA device, those resources cannot be shared or used across more than  
one local device, even if there are multiple devices in the same machine. Figure 13-3 presents the RDMA resource 
creation hierarchy.

Figure 13-3. RDMA resource creation hierarchy

RDMA Device
The client needs to register with the RDMA stack in order to be notified about any RDMA device that is being added to 
the system or removed from it. After the initial registration, the client is notified for all existing RDMA devices. A callback 
will be invoked for every RDMA device, and the client can start working with these devices in the following ways:

Query the device for various attributes•฀

Modify the device attributes•฀

Create, work with and destroy resources•฀
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The ib_register_client() method registers a kernel client that wants to use the RDMA stack. The specified 
callbacks will be invoked for every new InfiniBand device that currently exists in the system and that will be added 
to or removed from (using hot-plug functionality) the system. The ib_unregister_client() method unregisters a 
kernel client that wants to stop using the RDMA stack. Usually, it is called when the driver is being unloaded. Here is 
an sample code that shows how to register the RDMA stack in a kernel client:
 
static void my_add_one(struct ib_device *device)
{
...
}
 
static void my_remove_one(struct ib_device *device)
{
...
}
 
static struct ib_client my_client = {
    .name   = "my RDMA module",
    .add    = my_add_one,
    .remove = my_remove_one
};
 
static int __init my_init_module(void)
{
    int ret;
 
    ret = ib_register_client(&my_client);
    if (ret) {
        printk(KERN_ERR "Failed to register IB client\n");
        return ret;
    }
 
    return 0;
}
 
static void __exit my_cleanup_module(void)
{
    ib_unregister_client(&my_client);
}
 
module_init(my_init_module);
module_exit(my_cleanup_module);
 

Following here is a description of several more methods for handling an InfiniBand device.

The •฀ ib_set_client_data() method sets a client context to be associated with an InfiniBand 
device.

The •฀ ib_get_client_data() method returns the client context that was associated with an 
InfiniBand device using the ib_set_client_data() method.
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The •฀ ib_register_event_handler() method registers a callback to be called for every 
asynchronous event that will occur to the InfiniBand device. The callback structure must be 
initialized with the INIT_IB_EVENT_HANDLER macro.

The •฀ ib_unregister_event_handler() method unregisters the event handler.

The •฀ ib_query_device() method queries the InfiniBand device for its attributes. Those 
attributes are constant and won’t be changed in subsequent calls of this method.

The •฀ ib_query_port() method queries the InfiniBand device port for its attributes. Some of 
those attributes are constant, and some of them might be changed in subsequent calls of this 
method—for example, the port LID, state, and some other attributes.

The •฀ rdma_port_get_link_layer() method returns the link layer of the device port.

The •฀ ib_query_gid() method queries the InfiniBand device port’s GID table in a specific 
index. The ib_find_gid() method returns the index of a specific GID value in a port’s  
GID table.

The •฀ ib_query_pkey() method queries the InfiniBand device port’s P_Key table in a specific 
index. The ib_find_pkey() method returns the index of a specific P_Key value in a port’s 
P_Key table.

Protection Domain (PD)
A PD allows associating itself with several other RDMA resources—such as SRQ, QP, AH, or MR—in order to provide a 
means of protection among them. RDMA resources that are associated with PDx cannot work with RDMA resources 
that were associated with PDy. Trying to mix those resources will end with an error. Typically, every module will have 
one PD. However, if a specific module wants to increase its security, it will use one PD for each remote QP or service 
that it uses. Allocation and deallocation of a PD is done like this:

The •฀ ib_alloc_pd() method allocates a PD. It takes as an argument the pointer of the device 
object that was returned when the driver callback was called after its registration.

The •฀ ib_dealloc_pd() method deallocates a PD. It is usually called when the driver is being 
unloaded or when the resources that are associated with the PD are being destroyed.

Address Handle (AH)
An AH is used in the Send Request of a UD QP to describe the path of the message from the local port to the remote 
port. The same AH can be used for several QPs if all of them send messages to the same remote port using the same 
attributes. Following is a description of four methods related to the AH:

The •฀ ib_create_ah() method creates an AH. It takes as an argument a PD and attributes for the 
AH. The AH attributes of the AH can be filled directly or by calling the ib_init_ah_from_wc() 
method, which gets as a parameter a received Work Completion (ib_wc object) that includes 
the attributes of a successfully completed incoming message, and the port it was received from. 
Instead of calling the ib_init_ah_from_wc() method and then the ib_create_ah() method, 
one can call the ib_create_ah_from_wc() method.

The •฀ ib_modify_ah() method modifies the attributes of an existing AH.

The •฀ ib_query_ah() method queries for the attributes of an existing AH.

The •฀ ib_destroy_ah() method destroys an AH. It is called when there isn’t a need to send any 
further messages to the node that the AH describes the path to.
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Memory Region (MR)
Every memory buffer that is accessed by the RDMA device needs to be registered. During the registration process,  
the following tasks are performed on the memory buffer:

Separate the contiguous memory buffer to memory pages.•฀

The mapping of the virtual-to-physical translation will be done.•฀

The memory pages permission is checked to ensure that the requested permissions for the MR •฀
is supported by them.

The memory pages are pinned, to prevent them from being swapped out. This keeps the •฀
virtual-to-physical mapping unchanged.

After a successful memory registration is completed, it has two keys:

•฀ Local key (lkey): A key for accessing this memory by local Work Requests.

•฀ Remote key (rkey): A key for accessing this memory by a remote machine using  
RDMA operations.

Those keys will be used in Work Requests when referring to those memory buffers. The same memory buffers 
can be registered several times, even with different permissions. The following is a description of some methods 
related to the MR:

The •฀ ib_get_dma_mr() method returns a Memory Region for system memory that is usable for 
DMA. It takes a PD and the requested access permission for the MR as arguments.

The •฀ ib_dma_map_single() method maps a kernel virtual address, that was allocated by the 
kmalloc() method family, to a DMA address. This DMA address will be used to access local 
and remote memory. The ib_dma_mapping_error() method should be used to check whether 
the mapping was successful.

The •฀ ib_dma_unmap_single() method unmaps a DMA mapping that was done using  
ib_dma_map_single(). It should be called when this memory isn’t needed anymore.

Note ■  There are some more flavors of ib_dma_map_single() that allow the mapping of pages, mapping  according 

to DMA attributes, mapping using a scatter/gather list, or mapping using a scatter/gather list with DMA attributes: 

ib_dma_map_page(), ib_dma_map_single_attrs(), ib_dma_map_sg(), and ib_dma_map_sg_attrs(). All of them have 

corresponding unmap functions.

Before accessing a DMA mapped memory, the following methods should be called:

•฀ ib_dma_sync_single_for_cpu() if the DMA region is going to be accessed by the CPU, or  
ib_dma_sync_single_for_device() if the DMA region is going to be accessed by the 
InfiniBand device.

The •฀ ib_dma_alloc_coherent() method allocates a memory block that can be accessed by the 
CPU and maps it for DMA.

The •฀ ib_dma_free_coherent() method frees a memory block that was allocated using  
ib_dma_alloc_coherent().
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The •฀ ib_reg_phys_mr() method takes a set of physical pages, registers them, and prepares a 
virtual address that can be accessed by an RDMA device. If you want to change it after it was 
created, you should call the ib_rereg_phys_mr() method.

The •฀ ib_query_mr() method retrieves the attributes of a specific MR. Note that most low-level 
drivers do not implement this method.

The •฀ ib_dereg_mr() method deregisters an MR.

Fast Memory Region (FMR) Pool
Registration of a Memory Region is a “heavy” procedure that might take some time to complete, and the context 
that performs it even might sleep if required resources aren’t available when it is called. This behavior might be 
problematic when performed in certain contexts—for example, in the interrupt handler. Working with an FMR pool 
allows you to work with FMRs with registrations that are “lightweight” and can be registered in any context. The API of 
the FMR pool can be found in include/rdma/ib_fmr_pool.h.

Memory Window (MW)
Enabling a remote access to a memory can be done in two ways:

Register a memory buffer with remote permissions enabled.•฀

Register a Memory Region and then bind a Memory Window to it.•฀

Both of those ways will create a remote key (rkey) that can be used to access this memory with the specified 
permissions. However, if you wish to invalidate the rkey to prevent remote access to this memory, performing 
Memory Region deregistration might be a heavy procedure. Working with Memory Window on this Memory Region 
and binding or unbinding it when needed might provide a “lightweight” procedure for enabling and disabling remote 
access to memory. Following is a description of three methods related to the MW:

The •฀ ib_alloc_mw() method allocates a Memory Window. It takes a PD and the MW type as 
arguments.

The •฀ ib_bind_mw() method binds a Memory Window to a specified Memory Region with a 
specific address, size, and remote permissions by posting a special Work Request to a QP. It is 
called when you want to allow temporary remote access to its memory. A Work Completion 
in the Send Queue of the QP will be generated to describe the status of this operation. If 
ib_bind_mw() was called to a Memory Windows that is already bounded, to the same Memory 
Region or a different one, the previous binding will be invalidated.

The •฀ ib_dealloc_mw() method deallocates the specified MW object.

Completion Queue (CQ)
Every posted Work Request, to either Send or Receive Queue, is considered outstanding until there is a corresponding 
Work Completion for it or for any Work Request that was posted after it. While the Work Request is outstanding, the 
content of the memory buffers that it points to is undetermined:

If the RDMA device reads this memory and sends its content over the wire, the client cannot •฀
know if this buffer can be (re)used or released. If this is a reliable QP, a successful Work 
Completion means that the message was received by the remote side. If this is an unreliable 
QP, a successful Work Completion means that the message was sent.

If the RDMA device writes a message to this memory, the client cannot know if this buffer •฀
contains the incoming message.
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A Work Completion specifies that the corresponding Work Request was completed and provides some information 
about it: its status, the used opcode, its size, and so on. A CQ is an object that contains the Work Completions. The 
client needs to poll the CQ in order to read the Work Completions that it has. The CQ works on a first-in, first-out (FIFO) 
basis: the order of Work Completions that will be de-queued from it by the client will be according to the order that they 
were enqueued to the CQ by the RDMA device. The client can read the Work Completions in polling mode or request to 
get a notification when a new Work Completion is added to the CQ. A CQ cannot hold more Work Completions than its 
size. If more Work Completions than its capacity are added to it, a Work Completion with an error will be added, a CQ 
error asynchronous event will be generated, and all the Work Queues associated with it will get an error. Here are some 
methods related to the CQ:

The •฀ ib_create_cq() method creates a CQ. It takes the following as its arguments: the pointer 
of the device object that was returned when the driver callback was called after its registration 
and the attributes for the CQ, including its size and the callbacks that will be called when there 
is an asynchronous event on this CQ or a Work Completion is added to it.

The •฀ ib_resize_cq() method changes the size of a CQ. The new number of entries cannot be 
less than the number of the Work Completions that currently populate the CQ.

The •฀ ib_modify_cq() method changes the moderation parameter for a CQ. A Completion 
event will be generated if at least a specific number of Work Completions enter the CQ or a 
timeout will expire. Using it might help reduce the number of interrupts that happen in an 
RDMA device.

The •฀ ib_peek_cq() method returns the number of available Work Completions in a CQ.

The •฀ ib_req_notify_cq() method requests that a Completion event notification be generated 
when the next Work Completion, or Work Completion that includes a solicited event 
indication, is added to the CQ. If no Work Completion is added to the CQ after the  
ib_req_notify_cq() method was called, no Completion event notification will occur.

The •฀ ib_req_ncomp_notif() method requests that a Completion event notification be created  
when a specific number of Work Completions exists in the CQ. Unlike the ib_req_notify_cq() 
method, when calling the ib_req_ncomp_notif() method, a Completion event notification 
will be generated even if the CQ currently holds this number of Work Completions.

The •฀ ib_poll_cq() method polls for Work Completions from a CQ. It reads the Work 
Completions from the CQ in the order they were added to it and removes them from it.

Here is an example of a code that empties a CQ—that is, reads all the Work Completions from a CQ, and checks 
their status:
 
struct ib_wc wc;
int num_comp = 0;
 
while (ib_poll_cq(cq, 1, &wc) > 0) {
    if (wc.status != IB_WC_SUCCESS) {
        printk(KERN_ERR "The Work Completion[%d] has a bad status %d\n",
                         num_comp, wc.status);
        return -EINVAL;
    }
    num_comp ++;
}
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eXtended Reliable Connected (XRC) Domain
An XRC Domain is an object that is used to limit the XRC SRQs an incoming message can target. That XRC domain 
can be associated with several other RDMA resources that work with XRC, such as SRQ and QP.

Shared Receive Queue (SRQ)
An SRQ is a way for the RDMA architecture to be more scalable on the receive side. Instead of having a separate Receive 
Queue for every Queue Pair, there is a shared Receive Queue that all of the QPs are connected to. When they need to 
consume a Receive Request, they fetch it from the SRQ. Figure 13-4 presents QPs that are associated with an SRQ.

Figure 13-4. QPs that are associated with an SRQ
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Here’s what you do if you have N QPs, and each of them might receive a burst of M messages at a random time:

Without using an SRQ, you post N*M Receive Requests.•฀

With SRQs, you post K*M (where K << N) Receive Requests.•฀

Unlike a QP, which doesn’t have any mechanism to determine the number of outstanding Work Requests in it, 
with an SRQ you can set a watermark limit. When the number of Receive Requests drops below this limit, an SRQ 
limit asynchronous event will be created for this SRQ. The downside of using an SRQ is that you cannot predict which 
QP will consume every posted Receive Request from the SRQ, so the message size that each posted Receive Request 
will be able to hold must be the maximum incoming message size that any of the QPs might get. This limitation can 
be handled by creating several SRQs, one for each different maximum message size, and associating them with the 
relevant QPs according to their expected message sizes.

Here is a description of some methods related to the SRQ and an example:

The •฀ ib_create_srq() method creates an SRQ. It takes a PD and attributes for the SRQ.

The •฀ ib_modify_srq() method modifies the attributes of the SRQ. It is used to set a new 
watermark value for the SRQ’s limit event or to resize the SRQ for devices that support it.

Here is an example for setting the value of the watermark to get an asynchronous event when the number of RRs 
in the SRQ drops below 5:
 
struct ib_srq_attr srq_attr;
int ret;
 
memset(&srq_attr, 0, sizeof(srq_attr));
srq_attr.srq_limit = 5;
 
ret = ib_modify_srq(srq, &srq_attr, IB_SRQ_LIMIT);
if (ret) {
    printk(KERN_ERR "Failed to set the SRQ's limit value\n");
    return ret;
}
 

Following here is a description of several more methods for handling an SRQ.

The •฀ ib_query_srq() method queries for the current SRQ attributes. This method is usually 
used to check the content of the SRQ’s limit value. The value 0 in the srq_limit member in the 
ib_srq_attr object means that there isn’t any SRQ limit watermark set.

The •฀ ib_destroy_srq() method destroys an SRQ.

The •฀ ib_post_srq_recv() method takes a linked list of Receive Requests as an argument and 
adds them to a specified Shared Receive Queue for future processing.

Here is an example for posting a single Receive Request to an SRQ. It saves an incoming message in a memory 
buffer, using its registered DMA address in a single gather entry:
 
struct ib_recv_wr wr, *bad_wr;
struct ib_sge sg;
int ret;
 
memset(&sg, 0, sizeof(sg));
sg.addr   = dma_addr;
sg.length = len;
sg.lkey   = mr->lkey;
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memset(&wr, 0, sizeof(wr));
wr.next     = NULL;
wr.wr_id    = (uintptr_t)dma_addr;
wr.sg_list  = &sg;
wr.num_sge  = 1;
 
ret = ib_post_srq_recv(srq, &wr, &bad_wr);
if (ret) {
    printk(KERN_ERR "Failed to post Receive Request to an SRQ\n");
    return ret;
}

Queue Pair (QP)
Queue Pair is the actual object used to send and receive data in InfiniBand. It has two separate Work Queues: Send 
and Receive Queues. Every Work Queue has a specific number of Work Requests (WR) that can be posted to it, a 
number of scatter/gather elements that are supported for each WR, and a CQ to which the Work Requests whose 
processing has ended will add Work Completion. Those Work Queues can be created with similar or different 
attributes—for example, the number of WRs that can be posted to each Work Queue. The order in each Work Queue is 
guaranteed—that is, the processing of a Work Request in the Send Queue will start according to the order of the Send 
Requests submission. And the same behavior applies to the Receive Queue. However, there isn’t any relation between 
them—that is, an outstanding Send Request can be processed even if it was posted after posting a Receive Request to 
the Receive Queue. Figure 13-5 presents a QP.

Figure 13-5. QP (Queue Pair)

Upon creation, every QP has a unique number across the RDMA device at a specific point in time.
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QP Transport Types

There are several QP transport types supported in InfiniBand:

•฀ Reliable Connected (RC): One RC QP is connected to a single remote RC QP, and reliability 
is guaranteed—that is, the arrival of all packets according to their order with the same content 
that they were sent with is guaranteed. Every message is fragmented to packets with the size 
of the path MTU at the sender side and defragmented at the receiver side. This QP supports 
Send, RDMA Write, RDMA Read, and Atomic operations.

•฀ Unreliable Connected (UC): One UC QP is connected to a single remote UC QP, and 
reliability isn’t guaranteed. Also, if a packet in a message is lost, the whole message is lost. 
Every message is fragmented to packets with the size of the path MTU at the sender side and 
defragmented at the receiver side. This QP supports Send and RDMA Write operations.

•฀ Unreliable Datagram (UD): One UD QP can send a unicast message to any UD QP in the 
subnet. Multicast messages are supported. Reliability isn’t guaranteed. Every message is 
limited to one packet message, with its size limited to the path MTU size. This QP supports 
only Send operations.

•฀ eXtended Reliable Connected (XRC): Several QPs from the same node can send messages 
to a remote SRQ in a specific node. This is useful for decreasing the number of QPs between 
two nodes from the order of the number of CPU cores—that is, QP in a process per core, to one 
QP. This QP supports all operations that are supported by RC QP. This type is relevant only for 
userspace applications.

•฀ Raw packet: Allows the client to build a complete packet, including the L2 headers, and send 
it as is. At the receiver side, no header will be stripped by the RDMA device.

•฀ Raw IPv6/Raw Ethertype: QPs that allow sending raw packets that aren’t interpreted by the IB 
device. Currently, both of these types aren’t supported by any RDMA device.

There are special QP transport types that are used for subnet management and special services:

•฀ SMI/QP0: QP used for subnet managements packets.

•฀ GSI/QP1: QP used for general services packets.

The ib_create_qp() method creates a QP. It takes a PD and the requested attributes that this QP will be created 
with as arguments. Here is an example for creating an RC QP using a PD that was created, with two different CQs: one 
for the Send Queue and one for the Receive Queue.
 
struct ib_qp_init_attr init_attr;
struct ib_qp *qp;
 
memset(&init_attr, 0, sizeof(init_attr));
init_attr.event_handler       = my_qp_event;
init_attr.cap.max_send_wr     = 2;
init_attr.cap.max_recv_wr     = 2;
init_attr.cap.max_recv_sge    = 1;
init_attr.cap.max_send_sge    = 1;
init_attr.sq_sig_type         = IB_SIGNAL_ALL_WR;
init_attr.qp_type             = IB_QPT_RC;
init_attr.send_cq             = send_cq;
init_attr.recv_cq             = recv_cq;
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    qp = ib_create_qp(pd, &init_attr);
    if (IS_ERR(qp)) {
        printk(KERN_ERR "Failed to create a QP\n");
        return PTR_ERR(qp);
    }

QP State Machine

A QP has a state machine that defines what the QP is capable of doing at each state:

•฀ Reset state: Each QP is generated at this state. At this state, no Send Requests or Receive 
Requests can be posted to it. All incoming messages are silently dropped.

•฀ Initialized state: At this state, no Send Requests can be posted to it. However, Receive 
Requests can be posted, but they won’t be processed. All incoming messages are silently 
dropped. It is a good practice to post a Receive Request to a QP at this state before moving it to 
RTR (Ready To Receive). Doing this prevents a case where remote QP sends messages need to 
consume a Receive Request but such were not posted yet.

•฀ Ready To Receive (RTR) state: At this state, no Send Requests can be posted to it, but Receive 
Requests can be posted and processed. All incoming messages will be handled. The first 
incoming message that is received at this state will generate the communication-established 
asynchronous event. A QP that only receives messages can stay at this state.

•฀ Ready To Send (RTS) state: At this state, both Send Requests and Receive Requests can  
be posted and processed. All incoming messages will be handled. This is the common  
state for QPs.

•฀ Send Queue Drained (SQD) state: At this state, the QP completes the processing of all the 
Send Requests that their processing has started. Only when there aren’t any messages that  
can be sent, you can change some of the QP attributes. This state is separated into two  
internal states:

•฀ Draining: Messages are still being sent.

•฀ Drained: The sending of the messages was completed.

•฀ Send Queue Error (SQE) state: The RDMA device automatically moves a QP to this state 
when there is an error in the Send Queue for unreliable transport types. The Send Request 
that caused the error will be completed with the error reason, and all of the consecutive Send 
Requests will be flushed. The Receive Queue will still work—that is, Receive Requests can be 
posted, and incoming messages will be handled. The client can recover from this state and 
modify the QP state back to RTS.

•฀ Error state: At this state, all of the outstanding Work Requests will be flushed. The RDMA 
device can move the QP to this state if this is a reliable transport type and there was an 
error with a Send Request, or if there was an error in the Receive Queue regardless of which 
transport type was used. All incoming messages are silently dropped.

A QP can be transitioned by ib_modify_qp() from any state to the Reset state and to the Error state. Moving the QP 
to the Error state will flush all of the outstanding Work Requests. Moving the QP to the Reset state will clear all previously 
configured attributes and remove all of the outstanding Work Request and Work Completions that were ended on this 
QP in the Completion Queues that this QP is working with. Figure 13-6 presents a QP state machine diagram.
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The ib_modify_qp() method modifies the attributes of a QP. It takes as an argument the QP to modify and the 
attributes of the QP that will be modified. The state machine of the QP can be changed according to the diagram 
shown in Figure 13-6. Every QP transport type requires different attributes to be set in each QP state transition.

Here is an example for modifying a newly created RC QP to the RTS state, in which it can send and receive 
packets. The local attributes are the outgoing port, the used SL, and the starting Packet Serial Number for the Send 
Queue. The remote attributes needed are the Receive PSN, the QP number, and the LID of the port that it uses.
 
    struct ib_qp_attr attr = {
        .qp_state        = IB_QPS_INIT,
        .pkey_index      = 0,
        .port_num        = port,
        .qp_access_flags = 0
    };
 
    ret = ib_modify_qp(qp, &attr,
              IB_QP_STATE         |
              IB_QP_PKEY_INDEX    |
              IB_QP_PORT          |
              IB_QP_ACCESS_FLAGS);

Figure 13-6. QP state machine
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if (ret) {
          printk(KERN_ERR "Failed to modify QP to INIT state\n");
          return ret;
}
 

attr.qp_state              = IB_QPS_RTR;
attr.path_mtu              = mtu;
attr.dest_qp_num           = remote->qpn;
attr.rq_psn                = remote->psn;
attr.max_dest_rd_atomic    = 1;
attr.min_rnr_timer         = 12;
attr.ah_attr.is_global     = 0;
attr.ah_attr.dlid          = remote->lid;
attr.ah_attr.sl            = sl;
attr.ah_attr.src_path_bits = 0,
attr.ah_attr.port_num      = port
 

ret = ib_modify_qp(ctx->qp, &attr,
          IB_QP_STATE                 |
          IB_QP_AV                    |
          IB_QP_PATH_MTU              |
          IB_QP_DEST_QPN              |
          IB_QP_RQ_PSN                |
          IB_QP_MAX_DEST_RD_ATOMIC    |
          IB_QP_MIN_RNR_TIMER);
if (ret) {
  printk(KERN_ERR "Failed to modify QP to RTR state\n");
  return ret;
}
 

attr.qp_state       = IB_QPS_RTS;
attr.timeout        = 14;
attr.retry_cnt      = 7;
attr.rnr_retry      = 6;
attr.sq_psn         = my_psn;
attr.max_rd_atomic  = 1;
ret = ib_modify_qp(ctx->qp, &attr,
          IB_QP_STATE             |
          IB_QP_TIMEOUT           |
          IB_QP_RETRY_CNT         |
          IB_QP_RNR_RETRY         |
          IB_QP_SQ_PSN            |
          IB_QP_MAX_QP_RD_ATOMIC);
if (ret) {
  printk(KERN_ERR "Failed to modify QP to RTS state\n");
  return ret;
}
 

Following here is a description of several more methods for handling a QP:

The •฀ ib_query_qp() method queries for the current QP attributes. Some of the attributes are constant  
(the values that the client specifies), and some of them can be changed (for example, the state).

The •฀ ib_destroy_qp() method destroys a QP. It is called when the QP isn’t needed anymore.
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Work Request Processing
Every posted Work Request, to either the Send or Receive Queue, is considered outstanding until there is a Work 
Completion, which was polled from the CQ which is associated with this Work Queue for this Work Request or for 
Work Requests in the same Work Queue that were posted after it. Every outstanding Work Request in the Receive 
Queue will end with a Work Completion. A Work Request processing flow in a Work Queue is according to the 
diagram shown in Figure 13-7.

Figure 13-7. Work Request processing flow

In the Send Queue, you can choose (when creating a QP) whether you want every Send Request to end with a 
Work Completion or whether you want to select the Send Requests that will end with Work Completions—that is, 
selective signaling. You might encounter an error for an unsignaled Send Request; nevertheless, a Work Completion 
with bad status will be generated for it.

When a Work Request is outstanding one cannot (re)use or free the resources that were specified in it when 
posting this Work Request. For example:

When posting a Send Request for a UD QP, the AH cannot be freed.•฀

When posting a Receive Request, the memory buffers that were referred to in a scatter/gather •฀
(s/g) list cannot be read, because it is unknown if the RDMA device already wrote the data  
in them.

“Fencing” is the ability to prevent the processing of a specific Send Request until the processing of the previous 
RDMA Read and Atomic operations ends. Adding the Fence indication to a Send Request can be useful, for example, 
when using RDMA Read from a remote address and sending the data, or part of it, in the same Send Queue. Without 
fencing, the send operation might start before the data is retrieved and available in local memory. When posting a 
Send Request to a UC or RC QP, the path to the target is known, because it was provided when moving the QP to the 
RTR state. However, when posting a Send Request to a UD QP, you need to add an AH to describe the path to the 
target(s) of this message. If there is an error related to the Send Queue, and if this is an Unreliable transport type, the 
Send Queue will move to the Error state (that is, the SQE state) but the Receive Queue will still be fully functional. The 
client can recover from this state and change the QP state back to RTS. If there is an error related to the Receive Queue, 
the QP will be moved to the Error state because this is an unrecoverable error. When a Work Queue is moved to the 
Error state, the Work Request that caused the error is ended with a status that indicates the nature of the error and the 
rest of the Work Requests in this Queue are flushed with error.
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Supported Operations in the RDMA Architecture
There are several operation types supported in InfiniBand:

•฀ Send: Send a message over the wire. The remote side needs to have a Receive Request 
available, and the message will be written in its buffers.

•฀ Send with Immediate: Send a message over the wire with an extra 32 bits of out-of-band data. 
The remote side needs to have a Receive Request available, and the message will be written in 
its buffers. This immediate data will be available in the Work Completion of the receiver.

•฀ RDMA Write: Send a message over the wire to a remote address.

•฀ RDMA Write with Immediate: Send a message over the wire, and write it to a remote address. 
The remote side needs to have a Receive Request available. This immediate data will be 
available in the Work Completion of the receiver. This operation can be seen as RDMA Write + 
Send with immediate with a zero-byte message.

•฀ RDMA Read: Read a remote address, and fill the local buffer with its content.

•฀ Compare and Swap: Compare the content of a remote address with valueX; if they are equal, 
replace its content with the valueY. All of this is performed in an atomic way. The original 
remote memory content is sent and saved locally.

•฀ Fetch and Add: Add a value to the content of a remote address in an atomic way. The original 
remote memory content is sent and saved locally.

•฀ Masked Compare and Swap: Compare the part of the content using maskX of a remote 
address with valueX; if they are equal, replace part of its content using the bits in maskY with 
valueY. All of this is performed in an atomic way. The original remote memory content is sent 
and saved locally.

•฀ Masked Fetch and Add: Add a value to the content of a remote address in an atomic way,  
and change only the bits that are specified in the mask. The original remote memory content 
is sent and saved locally.

•฀ Bind Memory Window: Binds a Memory Windows to a specific Memory Region.

•฀ Fast registration: Registers a Fast Memory Region using a Work Request.

•฀ Local invalidate: Invalidates a Fast Memory Region using a Work Request. If someone uses 
its old lkey/rkey, it will be considered an error. It can be combined with send/RDMA read; in 
such a case, first the send/read will be performed, and only then this Fast Memory Region will 
be invalidated.

The Receive Request specifies where the incoming message will be saved for operations that consume a Receive 
Request. The total size of the memory buffers specified in the scatter list must be equal to or greater than the size of 
the incoming message.

For UD QP, because the origin of the message is unknown in advance (same subnet or another subnet, unicast 
or multicast message), an extra 40 bytes, which is the GRH header size, must be added to the Receive Request buffers. 
The first 40 bytes will be filled with the GRH of the message, if such is available. This GRH information describes 
how to send a message back to the sender. The message itself will start at offset 40 in the memory buffers that were 
described in the scatter list.

The ib_post_recv() method takes a linked list of Receive Requests and adds them to the Receive Queue of a 
specific QP for future processing. Here is an example for posting a single Receive Request for a QP. It saves an incoming 
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message in a memory buffer using its registered DMA address in a single gather entry. qp is a pointer to a QP that was 
created using ib_create_qp(). The memory buffer is a block that was allocated using kmalloc() and mapped for DMA 
using ib_dma_map_single(). The used lkey is from the MR that was registered using ib_get_dma_mr().
 
struct ib_recv_wr wr, *bad_wr;
struct ib_sge sg;
int ret;
 
memset(&sg, 0, sizeof(sg));
sg.addr   = dma_addr;
sg.length = len;
sg.lkey   = mr->lkey;
 
memset(&wr, 0, sizeof(wr));
wr.next     = NULL;
wr.wr_id    = (uintptr_t)dma_addr;
wr.sg_list  = &sg;
wr.num_sge  = 1;
 
ret = ib_post_recv(qp, &wr, &bad_wr);
 
if (ret) {
    printk(KERN_ERR "Failed to post Receive Request to a QP\n");
    return ret;
}
 

The ib_post_send() method takes as an argument a linked list of Send Requests and adds them to the Send 
Queue of a specific QP for future processing. Here is an example for posting a single Send Request of a Send operation 
for a QP. It sends the content of a memory buffer using its registered DMA address in a single gather entry.
 
struct ib_sge sg;
struct ib_send_wr wr, *bad_wr;
int ret;
 
memset(&sg, 0, sizeof(sg));
sg.addr   = dma_addr;
sg.length = len;
sg.lkey   = mr->lkey;
 
memset(&wr, 0, sizeof(wr));
wr.next       = NULL;
wr.wr_id      = (uintptr_t)dma_addr;
wr.sg_list    = &sg;
wr.num_sge    = 1;
wr.opcode     = IB_WR_SEND;
wr.send_flags = IB_SEND_SIGNALED;
 
ret = ib_post_send(qp, &wr, &bad_wr);
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if (ret) {
    printk(KERN_ERR "Failed to post Send Request to a QP\n");
    return ret;
}

Work Completion Status

Every Work Completion can be ended successfully or with an error. If it ends successfully, the operation was finished 
and the data was sent according to the transport type reliability level. If this Work Completion contains an error, the 
content of the memory buffers is unknown. There can be many reasons that the Work Request status indicates that 
there is an error: protection violation, bad address, and so on. The violation errors won’t perform any retransmission. 
However, there are two special retry flows that are worth mentioning. Both of them are done automatically by the 
RDMA device, which retransmit packets, until the problem is solved or it exceeds the number of retransmissions. 
If the issue was solved, the client code won’t be aware that this even happened, besides a temporary performance 
hiccup. This is relevant only for Reliable transport types.

Retry Flow

If the receiver side didn’t return any ACK or NACK to the sender side within the expected timeout, the sender might 
send the message again, according to the timeout and the retry count attributes that were configured in the QP 
attributes. There might be several reasons for having such a problem:

The attributes of the remote QP or the path to it aren’t correct.•฀

The remote QP state didn’t get to (at least) the RTR state.•฀

The remote QP state moved to the Error state.•฀

The message itself was dropped on the way from the sender to the receiver (for example,  •฀
a CRC error).

The ACK or NACK of messages was dropped on the way from the receiver to the sender  •฀
(for example, a CRC error).

Figure 13-8 presents the retry flow becasue of a packet loss that overcame a packet drop.
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If eventually the ACK/NACK is received by the sender QP successfully, it will continue to send the rest of the 
messages. If any message in the future has this problem too, the retry flow will be done again for this message as 
well, without any history that this was done before. If even after retrying several times the receiver side still doesn’t 
respond, there will be a Work Completion with Retry Error on the sender side.

Receiver Not Ready (RNR) Flow

If the receiver side got a message that needs to consume a Receive Request from the Receiver Queue, but there isn’t 
any outstanding Receive Request, the receiver will send back to the sender an RNR NACK. After a while, according to 
the time that was specified in the RNR NACK, the sender will try to send the message again.

If eventually the receiver side posts a Receiver Request in time, and the incoming message consumes it, an ACK 
will be sent to the sender side to indicate that the message was saved successfully. If any message in the future has 
this problem too, the RNR retry flow will be done again for this message as well, without any history that this was done 
before. If even after retrying several times the receiver side still didn’t post a Receiver Request and an RNR NACK was 
sent to the sender for each sent message, a Work Completion with RNR Retry Error will be generated on the sender 
side. Figure 13-9 presents the RNR retry flow of retry that overcome a missing Receive Request in he receiver side.

Figure 13-8. A retry flow (on reliable transport types)
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In this section, I covered the Work Request status and some of the bad flows that can happen to a message. In the 
next section, I will discuss the multicast groups.

Multicast Groups
Multicast groups are a means to send a message from one UD QP to many UD QPs. Every UD QP that wants to get 
this message needs to be attached to the multicast group. When a device gets a multicast packet, it duplicates it to all 
of the QPs that are attached to that group. Following is a description of two methods related to multicast groups:

The •฀ ib_attach_mcast() method attaches a UD QP to a multicast group within an InfiniBand 
device. It accepts the QP to be attached and the multicast group attributes.

The •฀ ib_detach_mcast() method detaches a UD QP from a multicast group.

Difference Between the Userspace and the Kernel-Level RDMA API
The userspace and the kernel level of the RDMA stack API are quite similar, because they cover the same technology 
and need to be able to provide the same functionality. When the userspace is calling a method of the control path 
from the RDMA API, it performs a context switch to the kernel level to protect privileged resources and to synchronize 
objects that need to be synchronized (for example, the same QP number cannot be assigned to more than one QP at 
the same time).

Figure 13-9. RNR retry flow (on reliable transport types)
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However, there are some differences between the userspace and the kernel-level RDMA API and functionality:

The prefix of all the APIs in the kernel level is “ib_”, while in the userspace the prefix is “ibv_”.•฀

There are enumerations and macros that exist only in the RDMA API in the kernel level.•฀

There are QP types that are available only in the kernel (for example, the SMI and GSI QPs).•฀

There are privileged operations that can be performed only in the kernel level—for example, •฀
registration of a physical memory, registration of an MR using a WR, and FMRs.

Some functionality isn’t available in the RDMA API in the userspace—for example, Request  •฀
for N notification.

The kernel API is asynchronous. There are callbacks that are called when there is an •฀
asynchronous event or Completion event. In the userspace, everything is synchronous and 
the user needs to explicitly check if there is an asynchronous event or Completion event in its 
running context (that is, thread).

XRC isn’t relevant for kernel-level clients.•฀

There are new features that were introduced to the kernel level, but they are not available (yet) •฀
in the userspace.

The userspace API is supplied by the userspace library “libibverbs.” And although some of the RDMA 
functionality in the user level is less than the kernel-level one, it is enough to enjoy the benefits of the InfiniBand 
technology.

Summary
You have learned in this chapter about the advantages of the InfiniBand technology. I reviewed the RDMA stack 
organization. I discussed the resource-creation hierarchy and all of the important objects and their API, which is 
needed in order to write client code that uses InfiniBand. You also saw some examples that use this API. The next 
chapter will deal with advanced topics like network namespaces and the Bluetooth subsystem.

Quick Reference
I will conclude this chapter with a short list of important methods of the RDMA API. Some of them were mentioned in 
this chapter.

Methods
Here are the methods.

int ib_register_client(struct ib_client *client);

Register a kernel client that wants to use the RDMA stack.

void ib_unregister_client(struct ib_client *client);

Unregister a kernel client that wants to stop using the RDMA stack.
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void  ib_set_client_data(struct ib_device *device, struct ib_client *client,  

void *data);

Set a client context to be associated with an InfiniBand device.

void *ib_get_client_data(struct ib_device *device, struct ib_client *client);

Read the client context that was associated with an InfiniBand device.

int ib_register_event_handler(struct ib_event_handler *event_handler);

Register a callback to be called for every asynchronous event that occurs to the InfiniBand device.

int ib_unregister_event_handler(struct ib_event_handler *event_handler);

Unregister a callback to be called for every asynchronous event that occurs to the InfiniBand device.

int ib_query_device(struct ib_device *device, struct ib_device_attr *device_attr);

Query an InfiniBand device for its attributes.

int ib_query_port(struct ib_device *device, u8 port_num, struct ib_port_attr  

*port_attr);

Query an InfiniBand device port for its attributes.

enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,  

u8 port_num);

Query for the link layer of the InfiniBand device’s port.

int ib_query_gid(struct ib_device *device, u8 port_num, int index, union  

ib_gid *gid);

Query for the GID in a specific index in the InfiniBand device’s port GID table.

int ib_query_pkey(struct ib_device *device, u8 port_num, u16 index, u16 *pkey);

Query for the P_Key-specific index in the InfiniBand device’s port P_Key table.

int ib_find_gid(struct ib_device *device, union ib_gid *gid, u8 *port_num,  

u16 *index);

Find the index of a specific GID value in the InfiniBand device’s port GID table.
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int ib_find_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index);

Find the index of a specific P_Key value in the InfiniBand device’s port P_Key table.

struct ib_pd *ib_alloc_pd(struct ib_device *device);

Allocate a PD to be used later to create other InfiniBand resources.

int ib_dealloc_pd(struct ib_pd *pd);

Deallocate a PD.

struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);

Create an AH that will be used when posting a Send Request in a UD QP.

int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 

struct ib_grh *grh, struct ib_ah_attr *ah_attr);

Initializes an AH attribute from a Work Completion of a received message and a GRH buffer. Those AH attributes can 
be used when calling the ib_create_ah() method.

struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, struct 

ib_grh *grh, u8 port_num);

Create an AH from a Work Completion of a received message and a GRH buffer.

int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);

Modify the attributes of an existing AH.

int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);

Query the attributes of an existing AH.

int ib_destroy_ah(struct ib_ah *ah);

Destroy an AH.

struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);

Return an MR system memory that is usable for DMA.
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static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr);

Check if the DMA memory points to an invalid address—that is, check whether the DMA mapping operation failed.

static inline u64 ib_dma_map_single(struct ib_device *dev, void *cpu_addr, size_t 

size, enum dma_data_direction direction);

Map a kernel virtual address to a DMA address.

static inline void ib_dma_unmap_single(struct ib_device *dev, u64 addr, size_t size, 

enum dma_data_direction direction);

Unmap a DMA mapping of a virtual address.

static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, void *cpu_addr, 

size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)

Map a kernel virtual memory to a DMA address according to DMA attributes.

static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, u64 addr, 

size_t size, enum dma_data_direction direction, struct dma_attrs *attrs);

Unmap a DMA mapping of a virtual address that was mapped according to DMA attributes.

static inline u64 ib_dma_map_page(struct ib_device *dev, struct page *page, 

unsigned long offset, size_t size, enum dma_data_direction direction);

Maps a physical page to a DMA address.

static inline void ib_dma_unmap_page(struct ib_device *dev, u64 addr, size_t size, 

enum dma_data_direction direction);

Unmap a DMA mapping of a physical page.

static inline int ib_dma_map_sg(struct ib_device *dev, struct scatterlist *sg,  

int nents, enum dma_data_direction direction);

Map a scatter/gather list to a DMA address.

static inline void ib_dma_unmap_sg(struct ib_device *dev, struct scatterlist *sg,  

int nents, enum dma_data_direction direction);

Unmap a DMA mapping of a scatter/gather list.
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static inline int ib_dma_map_sg_attrs(struct ib_device *dev, struct scatterlist *sg, 

int nents, enum dma_data_direction direction, struct dma_attrs *attrs); 

Map a scatter/gather list to a DMA address according to DMA attributes.

static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, struct scatterlist 

*sg, int nents, enum dma_data_direction direction, struct dma_attrs *attrs);

Unmap a DMA mapping of a scatter/gather list according to DMA attributes.

static inline u64 ib_sg_dma_address(struct ib_device *dev, struct scatterlist *sg);

Return the address attribute of a scatter/gather entry.

static inline unsigned int ib_sg_dma_len(struct ib_device *dev, struct  

scatterlist *sg);

Return the length attribute of a scatter/gather entry.

static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, u64 addr, 

size_t size, enum dma_data_direction dir);

Transfer a DMA region ownership to the CPU. It should be called before the CPU accesses a DMA mapped region 
whose ownership was previously transferred to the device.

static inline void ib_dma_sync_single_for_device(struct ib_device *dev, u64 addr, 

size_t size, enum dma_data_direction dir);

Transfer a DMA region ownership to the device. It should be called before the device accesses a DMA mapped region 
whose ownership was previously transferred to the CPU.

static inline void *ib_dma_alloc_coherent(struct ib_device *dev, size_t size,  

u64 *dma_handle, gfp_t flag);

Allocate a memory block that can be accessed by the CPU, and map it for DMA.

static inline void ib_dma_free_coherent(struct ib_device *dev, size_t size,  

void *cpu_addr, u64 dma_handle);

Free a memory block that was allocated using ib_dma_alloc_coherent().
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struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, struct ib_phys_buf *phys_buf_array, 

int num_phys_buf, int mr_access_flags, u64 *iova_start);

Take a physical page list, and prepare it for being accessed by the InfiniBand device.

int ib_rereg_phys_mr(struct ib_mr *mr, int mr_rereg_mask, struct ib_pd *pd, struct 

ib_phys_buf *phys_buf_array, int num_phys_buf, int mr_access_flags, u64  

*iova_start);

Change the attributes of an MR.

int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);

Query for the attributes of an MR.

int ib_dereg_mr(struct ib_mr *mr);

Deregister an MR.

struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);

Allocate an MW. This MW will be used to allow remote access to an MR.

static inline int ib_bind_mw(struct ib_qp *qp, struct ib_mw *mw, struct ib_mw_bind 

*mw_bind);

Bind an MW to an MR to allow a remote access to local memory with specific permissions.

int ib_dealloc_mw(struct ib_mw *mw);

Deallocates an MW.

struct ib_cq *ib_create_cq(struct ib_device *device, ib_comp_handler comp_handler, 

void (*event_handler)(struct ib_event *, void *), void *cq_context, int cqe,  

int comp_vector);

Create a CQ. This CQ will be used to indicate the status of ended Work Requests for Send or Receive Queues.

int ib_resize_cq(struct ib_cq *cq, int cqe);

Change the number of entries in a CQ.
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int ib_modify_cq(structib_cq *cq, u16 cq_count, u16 cq_period);

Modify the moderation attributes of a CQ. This method is used to decrease the number of interrupts of an InfiniBand 
device.

int ib_peek_cq(structib_cq *cq, intwc_cnt);

Return the number of available Work Completions in a CQ.

static inline int ib_req_notify_cq(struct ib_cq *cq, enum ib_cq_notify_flags flags);

Request a Completion notification event to be generated when the next Work Completion is added to the CQ.

static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt);

Request a Completion notification event to be generated when there is a specific number of Work Completions in a 
CQ.

static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, struct ib_wc *wc);

Read and remove one or more Work Completions from a CQ. They are read in the order that they were added to the 
CQ.

struct ib_srq *ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr);

Create an SRQ that will be used as a shared Receive Queue for several QPs.

int ib_modify_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr, enum  

ib_srq_attr_mask srq_attr_mask);

Modify the attributes of an SRQ.

int ib_query_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr);

Query for the attributes of an SRQ. The SRQ limit value might be changed in subsequent calls to this method.

int ib_destroy_srq(struct ib_srq *srq);

Destroy an SRQ.

struct ib_qp *ib_create_qp(struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr);

Create a QP. Every new QP is assigned with a QP number that isn’t in use by other QPs at the same time.
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int ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask);

Modify the attributes of a QP, which includes Send and Receive Queue attributes and the QP state.

int ib_query_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, 

struct ib_qp_init_attr *qp_init_attr);

Query for the attributes of a QP. Some of the attributes might be changed in subsequent calls to this method.

int ib_destroy_qp(struct ib_qp *qp);

Destroy a QP.

static inline int ib_post_srq_recv(struct ib_srq *srq, struct ib_recv_wr *recv_wr, 

struct ib_recv_wr **bad_recv_wr);

Adds a linked list of Receive Requests to an SRQ.

static inline int ib_post_recv(struct ib_qp *qp, struct ib_recv_wr *recv_wr, struct 

ib_recv_wr **bad_recv_wr);

Adds a linked list of Receive Requests to the Receive Queue of a QP.

static inline int ib_post_send(struct ib_qp *qp, struct ib_send_wr *send_wr, struct 

ib_send_wr **bad_send_wr);

Adds a linked list of Send Requests to the Send Queue of a QP.

int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);

Attaches a UD QP to a multicast group.

int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);

Detaches a UD QP from a multicast group.


